
Empirical Evaluation of Latency-sensitive Application
Performance in the Cloud

Sean K. Barker, Prashant Shenoy
Department of Computer Science

University of Massachusetts Amherst
[sbarker, shenoy]@cs.umass.edu

ABSTRACT
Cloud computing platforms enable users to rent computing and
storage resources on-demand to run their networked applications
and employ virtualization to multiplex virtual servers belonging to
different customers on a shared set of servers. In this paper, we
empirically evaluate the efficacy of cloud platforms for running
latency-sensitive multimedia applications. Since multiple virtual
machines running disparate applications from independent users
may share a physical server, our study focuses on whether dy-
namically varying background load from such applications can in-
terfere with the performance seen by latency-sensitive tasks. We
first conduct a series of experiments on Amazon’s EC2 system to
quantify the CPU, disk, and network jitter and throughput fluc-
tuations seen over a period of several days. We then turn to a
laboratory-based cloud and systematically introduce different lev-
els of background load and study the ability to isolate applications
under different settings of the underlying resource control mecha-
nisms. We use a combination of micro-benchmarks and two real-
world applications—the Doom 3 game server and Apple’s Darwin
Streaming Server—for our experimental evaluation. Our results re-
veal that the jitter and the throughput seen by a latency-sensitive
application can indeed degrade due to background load from other
virtual machines. The degree of interference varies from resource
to resource and is the most pronounced for disk-bound latency-
sensitive tasks, which can degrade by nearly 75% under sustained
background load. We also find that careful configuration of the re-
source control mechanisms within the virtualization layer can mit-
igate, but not eliminate, this interference.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Performance attributes;
D.4.8 [Operating Systems]: Performance—measurements
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1. INTRODUCTION

1.1 Motivation
Cloud computing has emerged as a new paradigm where an or-

ganization or user may dynamically rent remote compute and stor-
age resources, using a credit card, to host networked applications
“in the cloud.” Fundamentally, cloud computing enables applica-
tion providers to allocate resources purely on-demand – on an as-
needed basis – and to vary the amount of resources to match work-
load demand. The promise of cloud computing lies in its “pay-
as-you-use” model – organizations only pay for the resources that
have been actually used and can flexibly increase or decrease the
resource capacity allocated to them at any time. Doing so can yield
cost savings since organizations no longer have to maintain an ex-
pensive IT infrastructure that is provisioned for peak usage – they
can instead simply rent capacity when needed and release it when
the peak ebbs. Since cloud providers bill for usage at a very fine-
grained level; e.g., based on hourly usage of servers or based on
amount of disk or network I/O, the model is attractive to any orga-
nization or user that has variable computing or storage needs.

While the initial wave of cloud computing applications has fo-
cused on providing web-based services or running “batch” jobs
based on MapReduce [10], the paradigm is well-suited for running
multimedia applications as well, as depicted in the following hypo-
thetical examples:

Consider a group of friends that wish to play an online game
such as Doom, but they do not have a machine available to use as a
private server. They decide to rent a cloud server for an evening to
host their game server and run their game clients on their laptops.
Since a cloud server may cost as little as 10 cents an hour to rent, an
evening of entertainment costs less than a dollar. Furthermore, the
cloud platform provisions each server with ample resources and
a fast network connection while requiring no manual upkeep or
configuration – users simply rent cloud servers for a few hours and
terminate them when done.

Next, consider a user who wishes to convert her high-definition
personal video library to the H.264 format for sharing on her smart-
phone or for posting on the web. Since transcoding hundreds of
hours of home movies on a desktop may take hours or days, she
decides to leverage the computational power of the cloud. She
rents multiple fast cloud servers, partitions her library into groups
of videos and assigns each group to a different server. The multi-
core servers complete their tasks in a few hours, and at a total rental
cost of a less than $10. Although uploading a large video collection
from a home to the cloud may take inordinately long, it is conceiv-



able that the user has kept a backup of the videos on cloud-based
storage (and thus need not upload any data) or can physically ship
a portable disk containing the data to the cloud provider for faster
uploading (some cloud providers already support such a service for
uploading very large datasets).

On the commercial side, we envision a local newspaper or a lo-
cal TV news channel that uses cloud servers to web-cast a local but
popular event; since its normal web server infrastructure may not
be provisioned for high-volume streaming, it is simpler to rent ca-
pacity from the cloud for the duration of the event for streaming.
Similarly, small gaming companies may leverage the cloud to host
new online games – since the popularity of a new game cannot be
predicted a priori, a company may choose to initially host the game
on a small number of cloud servers, and scale up the capacity if the
game becomes popular.

While cloud servers and storage are well-suited for web-based
applications that are more tolerant to delay and jitter, a key ques-
tion is how well cloud platforms can service the needs of latency-
sensitive multimedia applications. For instance, game users are
very sensitive to delays from the online servers, and streaming ap-
plications are sensitive to both bandwidth fluctuations and jitter. In
this paper, we empirically evaluate the efficacy of cloud platforms
when servicing multimedia applications. In particular, we exam-
ine the resource control mechanisms available in cloud platforms
and evaluate which mechanisms are best suited for multimedia ap-
plications and scenarios under which these mechanisms expose in-
terference from other competing applications running on the same
hardware.

1.2 Research Contributions
Our paper makes three sets of contributions.
EC2 evaluation. We run a series of microbenchmarks on the

Amazon EC2 public cloud over a period of several days to evaluate
the jitter and delay seen by latency-sensitive CPU, disk and network
tasks. Our results show that, despite the resource control mech-
anisms that are designed to provide performance isolation across
co-located virtual machines, there may be significant jitter in the
CPU availability, and disk latency and throughput seen by a cloud-
based application. We also find a certain degree of variation in the
first-hop network latency as well. Overall these results show that
a cloud platform may expose interference from competing applica-
tions that are running on other VMs on the same physical server,
causing the performance of latency-sensitive tasks to fluctuate over
time.

Evaluation of hypervisor resource control mechanisms: To
better understand the cause of such interference and to determine
configuration settings to minimize their impact, we conduct a de-
tailed evaluation of the resource control mechanisms employed by
the Xen hypervisor—the same hypervisor employed in EC2. We
introduce a controlled background CPU, disk and network load
and study the impact of varying this load on the performance of
latency-sensitive tasks; we also evaluate the impact of using differ-
ent “knobs” exposed by the resource control mechanisms in Xen
and Linux on the degree of performance isolation seen by compet-
ing applications.

We find that Xen’s CPU scheduler generally provides fair shares
even under stress but may expose jitter when multiple VMs share a
CPU. The worst interference is seen for a shared disk, which lacks
a proper isolation mechanism in Xen; we also find that network
interference can be mitigated by properly configuring bandwidth
sharing mechanisms to isolate VMs.

Multimedia application case studies: We evaluate the perfor-
mance of two latency-sensitive applications — the Doom 3 game
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Figure 1: Cloud platform architecture.

server and the Darwin Streaming Server on a laboratory cloud server.
Our goal is to evaluate the real-world impact of various types of
background interference, particularly network, which is harder to
predict. We find that background network I/O has a significant im-
pact on latency and jitter in addition to decreasing available through-
put. Using the Linux utility tc allows us to manage this latency
impact and provides a choice between sharing and dedicated band-
width that results in a tradeoff between lower latency and jitter.

Overall, our evaluation finds that while latency-sensitive appli-
cations on cloud servers are subject to harmful interference, proper
server configuration can mitigate, but not totally eliminate, the im-
pacts of such interference. Such configuration involves tuning Xen’s
hypervisor CPU settings as well as using the tc utility to isolate
network performance; however, the lack of disk isolation mecha-
nisms in Xen remains a problem for disk-bound latency-sensitive
tasks.

The rest of this paper is structured as follows. We provide a
brief background on cloud computing platforms in Section 2. We
present our Amazon EC2 results in Section 3. We discuss Xen’s
resource control mechanisms and present the results of our Xen-
based evaluation in Section 4. Our multimedia application case
studies are presented in Section 5. We discuss related work in Sec
6 and conclude in Section 7.

2. CLOUD COMPUTING PLATFORMS: AN
INTRODUCTION

To better understand the efficacy of running latency-sensitive
multimedia applications on cloud platforms, we must first under-
stand the internals of how cloud platforms are designed. A cloud
platform is essentially a virtualized data center with a self-service
web portal.

The data center consists of a cluster of servers, each running a
hypervisor or a virtual machine monitor (see Figure 1). Customer
applications are run inside virtual machines that are mapped onto
these physical servers; each server may run multiple virtual ma-
chines, each belonging to a different customer. In the cloud plat-
form, a customer uses the web portal to request a new server (and
possibly storage). Upon receiving a new user request, the cloud
management software locates a server with sufficient unused ca-
pacity and uses the hypervisor to create a new virtual machine. The
user-specified VM image is copied over to the server and attached
to the virtual machine; the new virtual server is then started up
using the OS kernel in the user-specified image. Upon setup, a cus-



Instance Type Memory ECUs Disk Cost
Small (default) 1.7 GB 1 160 GB $0.10

Large 7.5 GB 4 850 GB $0.40
Extra Large 15 GB 8 1690 GB $0.80

High-CPU Med. 1.7 GB 5 350 GB $0.20
High-CPU XL 7 GB 20 1690 GB $0.80

Table 1: Amazon EC2 instance types. One ECU (EC2 Compute
Unit) is roughly equivalent to a 1.0-1.2 GHz 2007 Opteron or
Xeon processor. Costs are per hour running a Linux instance
as of Oct. 2009.

tomer gets full (i.e., privileged) access to her virtual server and can
then install and run applications of her choice.

To simplify initial setup, virtual machines running particular soft-
ware are packaged into portable images (typically single files) called
virtual machine images. These images are then made available to
users, removing most of the installation and configuration neces-
sary to set up a new VM. This makes individual VMs much more
disposable than traditional machines, and may be quickly set up
or destroyed on particular physical machines. For example, a new
VM in Amazon EC2 is set up by selecting the desired VM image,
which is then copied to an automatically selected physical machine
in an EC2 data center and booted, resulting in a fully installed and
configured system in minutes.

In a virtualized environment, physical servers are controlled by
a privileged hypervisor, which acts as the intermediary between
hardware itself and the set of virtual machines running on it. In-
dividual virtual machines are typically indistinguishable from na-
tive machines from an end-user perspective, exposing their own
disks, memory, and operating system software. Multiple VMs on
the same machine need not even be running the same operating sys-
tem and are oblivious to the particular configurations of co-located
VMs.

Typical cloud providers support servers of different “sizes”—
for instance, Amazon’s EC2 supports small, large and extra large
server instances; these instances differ in the number of cores and
the memory allocated to them and are priced accordingly (see Ta-
ble 1). From a cloud platform perspective, multiple virtual servers
may be mapped onto a single physical server. Thus, if the clus-
ter comprises eight-core servers, each physical server can house
eight uni-core small VMs, four dual-core VMs and two quad-core
VMs. The underlying hypervisor partitions resources on the phys-
ical server across VMs so as to allocate the amounts specified in
Table 1 and to isolate the VMs from one another. While the cloud
management software can specify a resource partitioning to the un-
derlying hypervisor, it is up to the resource control mechanisms in
the underlying hypervisor to enforce these allocations at run-time
and to provide the desired isolation. The goal of our work is to
empirically evaluate how well these resource control mechanisms
work in terms of performance isolation. In particular, we empiri-
cally evaluate whether a VM that sees a sudden CPU, disk or net-
work load spike can impact the performance seen by a different
VM running a latency-sensitive application.

Experimental methodology: We begin our experimental study
by running a sequence of latency-sensitive micro-benchmarks on
the Amazon EC2 public cloud over a period of several days. Our
micro-benchmarks measure the variations in the CPU, disk, and
network performance seen by a VM. If our results show that the
allocations of these resources is stable and does not vary over time,
then this will imply that existing cloud platforms are well-suited
for running latency-sensitive applications. On the other hand, if

our experiments uncover jitter in the resource allocations, then this
will imply that the underlying hypervisor is unable to fully isolate
the VMs from one another. We must then examine the hypervisor
itself and determine what resource control mechanisms (and what
settings) are best suited for latency-sensitive applications.

As we will show later, our EC2 experiments do reveal jitter in
the performance seen by a latency-sensitive application. However,
since EC2 does not expose the hypervisor control mechanisms to
a customer and nor does the EC2 platform provide any control
over what other VMs are placed on a given physical server, we
conduct our hypervisor-based experiments on a laboratory cloud
platform. Such a laboratory-based cloud allows complete control
over background load in other VMs (allowing repeatability of ex-
periments) and also allows full control how the resource allocation
mechanisms in the underlying hypervisor are configured. We use
the Xen virtual machine platform for our laboratory-based cloud
experiments. We choose Xen for two reasons. First, Xen is an
open-source platform allowing us to examine (and, if necessary,
modify) the underlying resource control mechanisms. Second, the
Amazon system is based on a variant of Xen [1], allowing our
laboratory cloud to better approximate the environment in which
latency-sensitive applications run on EC2.

3. MICROBENCHMARKING EC2
In this section, we empirically evaluate the efficacy of a public

cloud platform, Amazon’s EC2, for hosting latency-sensitive appli-
cations. At the outset, we note that Amazon’s EC2 SLA does not
provide any explicit performance guarantees for latency-sensitive
applications (other than specifying the approximate hardware re-
sources allocated to a customer’s virtual machine as shown in Ta-
ble 1). Thus, if an application experiences variable performance
due to background load from other VMs, this does not imply any
SLA violations, since no explicit performance guarantees are pro-
vided. Our goal is to quantitatively determine whether such back-
ground load can impact application performance on a cloud server
and by how much.

Time-shared systems such as Linux are designed to support inter-
active applications, and their underlying schedulers do not provide
performance guarantees or isolation between applications. Thus,
background processes can easily impact latency-sensitive applica-
tions in such systems. To address this limitation, there has been
more than a decade of research addressing the design of fair-share
schedulers that provide a guaranteed share of the resource to an ap-
plication and also provide performance isolation [19, 16, 2]. Unlike
OS kernels that typically support time-sharing, modern hypervisors
such as Xen and VMWare actually implement variants of these fair-
share schedulers to provide performance isolation to resident VMs
(in Section 4 we discuss the specific resource control mechanisms
implemented in hypervisors in more detail). Thus, one may expect
the degree of performance isolation in hypervisors and, by exten-
sion, in cloud servers, to be significantly better than in time-shared
systems. The key question is whether this performance isolation
is “good enough” for running latency-sensitive applications, even
though cloud system do not provide any explicit SLA performance
guarantees to this class of applications.

Microbenchmarks and Methodology: We rented an Amazon EC2
server for several weeks and ran several latency-sensitive microbench-
marks on this server; we chose the standard “small” EC2 configu-
ration for our experiments, as it represents the most common setup.
It is important to note that we have no control whatsoever over the
background load (i.e., the load imposed by other resident VMs) on
this physical server, nor do we have any control over how many
VMs are collocated on the machine. Consequently, we repeatedly



 0

 200

 400

 600

 800

 1000

 1200

 1400

C
P
U
 
t
i
m
e
 
(
m
s
)

Time (5 minute intervals)

EC2
Local

Figure 2: CPU jitter on an EC2 server.

ran each benchmark over a period of several days to maximize the
chances of experiencing varying background loads and to evaluate
its impact on the performance of our benchmarks.

We loaded our EC2 instance with an Amazon Machine Image
(AMI) running CentOS 5.3 with a Linux 2.6.18 Xen kernel. Our
microbenchmarks tested the three primary shared resources–CPU,
network, and disk—to understand the impact of background load
on the performance of each resource. Our VM software consisted
of a server that ran our tests on-demand whenever a request was re-
ceived. We ran the tests and collected results every 5 minutes – the
test battery generally took less than 10 seconds to complete, leav-
ing the VM idle the rest of the time. We describe each benchmark
task here.

Our CPU micro-benchmark is a single threaded task that per-
forms a small, fixed number of floating-point computations. Since
the task is strictly CPU-bound with no I/O, its completion time
provides a reasonable measure of the CPU available to the virtual
machine—if the measured completion times fluctuate, this implies
that the underlying hypervisor is allocating different amounts of
CPU to the VM, possibly due to a varying background load.

Our disk micro-benchmark consists of four independent tests.
We wish to measure both the sustained disk throughput available
to the VM (both reading and writing) as well as the latency of
small read and write operations. Whereas jitter-free disk through-
put is important for applications such as streaming servers, jitter-
free small I/Os are important to applications such as game servers.
Benchmarking disk I/O performance is complicated by the pres-
ence of caching both at the disk level and at the OS level. Where
possible, we attempt to isolate the effects of caching from our re-
sults by clearing the disk cache between successive benchmark
runs.

For our read evaluation, we created a set of several hundred 5
MB files of random data to use for the disk tests. Each small read
test consisted of picking a random file and measuring the latency to
read a randomly chosen 1 KB block from it. The sustained read test
was similar and involved reading several entire files in succession.
Write tests were the same as for reads, except they wrote data into
the files rather than reading them.

Our network benchmark also had several subcomponents. In or-
der to isolate interference from other VMs from regular Internet
traffic variations, we used traceroute to measure ping times
within Amazon’s EC2 infrastructure. We measured both the ping
from our server to the next immediate hop as well as the sum of the
first three hops – the former captures jitter seen at the network in-
terface of the server, while the latter captures a wider range of jitter

occurring within Amazon’s internal routers. As a more comprehen-
sive but less specific test, we also measured the time to transfer a
32 KB block back and forth between our local server and the EC2
VM. In addition to any delay occurring within EC2, this measure-
ment includes delay and jitter seen by standard wide-area Internet
traffic.

CPU microbenchmarks.
Figure 2 depicts the times taken to complete each invocation

of our CPU microbenchmark over a period of several hours. We
observed significant variations in the completion time of the task.
While most of the tests completed in roughly 500 ms, there was
frequent variations between 400 and 600 and many outliers taking
significantly longer; a few even took more than an entire second.
To verify that this behavior was due to other processes executing
on the machine and not to our experimental setup or scheduling ar-
tifacts, we also ran our benchmark on a Xen virtual machine in a
local server that was guaranteed to be otherwise idle (i.e., no co-
located VMs performing any work). The results of this local test
are also depicted in Figure 2. As the hardware in our local ma-
chine was different than the hardware provided in our EC2 VM,
the absolute comparison of the completion times is not relevant to
our discussion. However, our local benchmark observed almost
no variation from the mean completion time, and certainly far less
than we observed in EC2. Given that our EC2 VM was provisioned
with an ostensibly fixed CPU capacity, the degree of variation we
observed was surprising and strongly suggests that other VMs run-
ning on our EC2 server were impacting the CPU performance of
our VM. Also notable is that the highest outliers in our EC2 test
appeared to cease during the latter part of our test – this behavior
could be explained by the shutdown of a collocated VM, resulting
in less background interference.

Overall, these results suggest that the fair-share CPU scheduler
in the hypervisor, as configured in EC2 systems, is not able to fully
isolate VMs from one another. Our experiments demonstrated that
amount of CPU available at any given time can fluctuate subject to
interference out of the VM’s control.

Disk microbenchmarks.
The results of our disk microbenchmarks are shown in Figures 3

and 4. Figure 3 (a) and (b) shows the observed jitter in the disk
throughput for “streaming” reads and writes—depicted as the com-
pletion time for large reads and writes. Both display a significant
amount of variation, particularly the write task, which appears to
display an ebb and flow of available write bandwidth. This curi-
ous pattern (which, we note, is not correlated with the time of day)
again prompted us to run the task on a local VM – as in the CPU
task, our local VM was extremely consistent and displayed none
of the wide swings we observed in the EC2 VM. This is a result
of some concern, as it demonstrates that available write bandwidth
can easily vary by as much as 50% from the mean. The read band-
width results also display significant variation, but we refrain from
drawing stronger conclusions regarding them – the low completion
times overall strongly suggest that caching or read-ahead, likely
within the hypervisor, is influencing our results.

The results for our small disk latency tests are similar. Figures 4
(a) and (b) plot the amount of time used to read or write a small 1
KB block of a random file. In both graphs, the presence of many
data points close to zero indicate that in many cases, a copy of the
selected file was cached somewhere and no disk I/O actually oc-
curred. However, in those which did incur a disk operation (prob-
ably most data points above 20 ms), the completion time varied
widely within a factor of about 5 (up to 100 ms).
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Figure 3: Jitter in disk throughput for large/streaming reads and writes.
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These results, despite caching artifacts, still clearly indicate that
there is significant room for improvement in isolating disk I/O be-
tween VMs. The wide variation in bandwidth available to a VM
is likely to be problematic for a latency-sensitive application that
relies on a certain level of service from the hardware.

Network microbenchmarks.
Figure 5 displays the results of our network microbenchmarks

for three-hop internal latency (a) and the small wide-area data trans-
fer (b). The results of the one-hop latency test are omitted, as we
saw effectively no jitter at that granularity. In the case of the first
three hops, while the majority of the pings displayed times typical
of a LAN (less than 5 ms), we also observed a significant number of
pings taking an order of magnitude (or more) longer. Based on the
our one-hop results, there is no reason to attribute these spikes to
virtualization or lack of isolation, but rather to queuing at the inter-
nal switches and routers, given the undoubtedly significant amount
of traffic that traverses Amazon’s infrastructure. However, these
variations may still cause difficulties for latency-sensitive applica-
tions running in high-bandwidth environments such as data centers.

The results of the network transfer operation display a reason-
ably wide variation, as well as the regular pattern of increasing
transfer times during peak work hours (mornings and early after-
noons) and decreased times during evenings and nights. These re-
sults are fairly typical of any wide-area Internet application and do
not suggest any performance isolation issues specific to EC2.

Overall, our network-based tests suggest that a certain amount of
latency variation is to be expected when running in a cloud-based
environment, but do not implicate resource sharing as the cause of
this variation. However, it is entirely possible that our VM was
simply not collocated with anything performing notable amounts
of network I/O. We evaluate the effect of network interference in a
more controlled setting later in Section 5.

4. RESOURCE SHARING IN XEN
Given the performance results from our EC2 study, we next con-

duct several experiments to understand the resource control mech-
anisms available to the hypervisor. We run these experiments on a
Xen-based laboratory cloud, which enables us to control the back-
ground load as well as exercise the settings of the various resource
control mechanisms to determine their impact on the jitter seen by
applications.

We first discuss Xen’s mechanisms for sharing each resource—
CPU, disk, and network—and then present the results of experi-
mental evaluation for that resource. Since RAM is statically parti-
tioned between VMs in Xen, no significant interference is expected
for memory, and thus we do not consider memory sharing in this
paper. Unless noted otherwise, we run the same microbenchmarks
as our EC2 experiments but in a more controlled setting. Section 5
then presents application case studies where we run full-fledged
applications to evaluate their performance with and without back-
ground interference.
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Figure 5: EC2 Network microbenchmarks.

4.1 CPU Sharing
Consider a multi-core physical server that runs multiple virtual

machines. In general, the number of virtual machines can be greater
than the number of cores in the system. To enable flexible sharing
of the cores, Xen defines the notion of a virtual CPU , or VCPU.
Each virtual machine is assigned one or more VCPUs at VM cre-
ation time; the hypervisor allows for a flexible mapping from VC-
PUs to physical cores in the system. It is possible to bind a VCPU
exclusively to a physical core, or each core can be shared between
multiple VCPUs.

In the event where multiple VCPUs are assigned to a core, or
where all cores are shared across all VCPUs, the hypervisor must
employ a CPU scheduler that divides time on the cores between
the VCPUs. Xen implements several CPU scheduling algorithms.
For instance, it implements Borrowed Virtual Time [14]—a variant
of the start time fair queuing (SFQ) proportion fair-share scheduler
[16, 15], which functions by assigning each VM a virtual time and
attempting to keep them in sync by scheduling the VCPU with the
smallest virtual time (thus fairly sharing between VCPUs in pro-
portion to their weight). Xen also supports a variant of the Earliest
Deadline First scheduler, which uses a model of real-time guaran-
tees for scheduling. Both of these, however, have been deprecated
in favor of the newly implemented default scheduler, the Credit
Scheduler. This scheduler operates by having each VM expend pe-
riodically reissued credits for CPU time. When a VM exceeds its
credit allowance, it is scheduled after other VMs waiting for CPU
time until credits are reissued.

Per-VM credit allocation is managed by two parameters: a weight
and an optional cap. The weight is simply a relative measure of
how many credits should be allocated to the VM. For example, a
VM with a weight of 2 should receive twice as much CPU time as a
VM with a weight of 1. Be default, the credit scheduler is work con-
serving, which means that a VM that has expended all of its credit
will be allocated additional CPU time if no other VM is using its
allocated share (i.e., unused CPU cycles are redistributed to needy
VMs rather than being wasted). The scheduler uses the notion of a
cap—when defined, it specifies the maximum amount of CPU the
VM is allowed to consume, even if the rest of the CPU is left idle.
For example, a VM with a cap of 70 is only allowed to consume
70% of a single core. If a VM has been assigned multiple VCPUs,
then it may use more than a single physical CPU concurrently; due
to the decoupling of CPUs and VCPUs, the number of VCPUs sim-
ply defines an upper limit on the CPU consumption of the VM.
VCPU allocations are automatically load balanced across all phys-
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Figure 6: CPU benchmark performance with randomized
background load.

ical CPU cores, but may be pinned to specific physical CPUs using
administrator tools in the hypervisor (domain-0 in Xen).

Our experiments evaluate the impact of different weight and cap
assignments to understand their efficacy in isolating the perfor-
mance of latency-sensitive applications.

CPU scheduler benchmarks: The credit scheduler allows a hy-
pervisor to specify a CPU share (via the VM’s weight) and hard
limits (via the cap). We conducted a series of experiments to eval-
uate the impact of both parameters on the performance and jitter
seen by a latency-sensitive application. We created two virtual ma-
chine on a Xen server; the first virtual machine ran the same CPU
microbenchmark as our EC2 experiment and the second VM was
used to introduce different amounts of background CPU load on the
server. Both VMs were bound to the same single CPU core in order
to evaluate the impact of per-core sharing. First, we gave the VMs
equal weights and evaluated the jitter seen by our microbenchmark
under variable background load in the second VM. This evaluates
a scenario possibly like the one we observed on EC2. Next, we
varied both the weight and the cap assigned to the foreground VM
while keeping the background VM constantly busy and measured
the CPU share of the first VM.

Figure 6 plots the jitter seen by the first benchmark, and as in the
EC2 case, we see that the completions times are unpredictable over
time. Figures 7 (a) and (b) depict the results obtained by varying
the weight and the cap, respectively. For the weight test, we fixed
one VM’s weight and gradually increased the weight of the other,
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Figure 7: Xen credit scheduler tests.

then plotted the ratio of their weights versus the ratio of their CPU
shares. According to the credit scheduler specification, these values
should always be nearly equal. At equal weight, this was true; both
VMs received exactly half of the CPU. However, this was not the
case with different weights; increasing the weight of one VM only
increased its CPU allocation by a small amount. After a ratio of 10
or above, the higher-weighted VM was only receiving about 33%
more CPU than the other.

For evaluating the effect of caps, we varied the cap of one VM
from 10% of a CPU to 90% of a CPU and varied the other in reverse
(so the total was always 100%). This represents a situation in which
each VM has a dedicated piece of the CPU that may not be used
by other VMs. We also ran this test a second time in which the
second VM was not executing (in this case, the total CPU usage
would be less than 100%). In both cases, the CPU allocation of
the first VM varied linearly with the cap, exactly as the scheduler
specifies it should. Furthermore, the presence of a competing VM
using the remainder of the CPU had no significant effect on the
CPU allocated to the original VM.

These results suggest that sharing a CPU using weight but no
caps will cause latency-sensitive tasks to experience jitter. Further-
more, the notion of a weight in the credit scheduler seems different
from that in fair-share schedulers—a higher weight yields a higher
share but the weight does not precisely denote the proportion of
CPU allocated to a VM For a latency-sensitive application that re-
quires a guaranteed certain CPU share, such a guarantee can be
made by assigning appropriate caps to each resident VM or dedicat-
ing CPU cores. Finally, although not evaluated here, in multi-core
systems, strong isolation can be achieved by dedicating an entire
core to a VM’s VCPU, in which case it will see minimal interfer-
ence from activity on other cores. This may not be true every case,
since cores may share resources such as cache, but should prevent
the possibility of starvation.

4.2 Disk Sharing
A typical cloud server will consist of a fast hard disk with hun-

dreds of gigabytes of disk storage; the disk capacity and band-
width is typically shared between the resident VMs. This may be
achieved by placing multiple VM machine images— each of which
act like a virtual disk to its VM —on a single hard drive. In such a
setup, although disk space is statically allocated to each VM, actual
disk bandwidth is shared between them.

The Xen I/O model places the hypervisor (running on the Domain-
0 VM) between the disk and the virtual machines. All I/O requests
from the virtual machines are routed through the hypervisor, which

is the only entity with direct access to the physical disk. A simple
round-robin servicing mechanism is employed to handle batches of
competing requests from each VM; there is presently no mecha-
nism to explicitly partition disk bandwidth between VMs. Thus, an
overloaded or a misbehaving VM may impact the disk performance
in other VMs.

Disk sharing benchmarks: We conducted a set of experiments
to determine the extent of the performance isolation between the
VMs. We used the same disk microbenchmarks as our EC2 exper-
iments and measured the same four statistics as described in Sec-
tion 3: small I/O operations and overall throughput for both reads
and writes. We ran our EC2 disk benchmarks in one VM while
the other performed heavy I/O by performing continuous dd op-
erations to read and write random files in multiple parallel threads
(one reader thread per writer thread). The benchmark VM repeated
the tests while we varied the number of background thread pairs in
the second VM. We used the default disk schedulers set by Xen:
the CFQ scheduler in Domain-0 and the simpler NOOP scheduler
in the guest VMs [5]. While [5] suggests that throughput could be
substantially improved by modifying the schedulers used, the im-
pact on fairness is demonstrated to be fairly minimal, so we did not
try other scheduler combinations.

Figure 8 shows the performance degradation (measured by the
time required to complete the benchmark tasks) experienced by
the first VM with varying background load in the second VM (de-
picted by the number of thread performing I/O operations in the
latter VM). In the ideal fair case, we expect each VM to get 50%
of the disk bandwidth. Ideally, there should be no impact on per-
formance regardless of the background load (i.e., no performance
degradation). The actual result, however, is that the second VM is
able to capture more than its fair share of disk bandwidth (or de-
prives competing VMs of their fair share). With a single thread
pair, throughput in the first VM dropped by roughly 65% and read
and write latencies increased by nearly 70% and 80%, respectively.
Increasing the number of thread pairs had a noticeable additional
impact on read latency and write throughput, resulting in degrada-
tion of about 75% for each.

This figure also shows that despite this unfairness, there is a limit
on the amount of degradation seen by the foreground VM. In other
word, while we were able to dampen disk performance in the first
VM by performing heavy I/O in the second, we were never able to
actually cripple disk performance – after a certain point, increasing
the amount of I/O occurring in the second VM had no additional
impact on the first, which remained responsive in spite of the heavy
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Figure 8: Disk performance with varying background load.

interference. We attribute this behavior to the round-robin servicing
of disk requests from each VM – this round-robin policy appears
to provide a degree of performance isolation by continuing to ser-
vice requests from each VM even when one of the VM has a large
number of outstanding requests.

For applications not performing intensive I/O, even a 75% drop
in available throughput or disk latency may not have a major impact
on application performance. However, for applications relying on
high disk throughput (such as media servers), such an unpredictable
impact on performance is quite problematic. Similarly, the variable
disk latency of small reads and writes can impact latency-sensitive
applications that rely on small I/O requests.

4.3 Network Sharing
As with disk bandwidth, Xen has no built-in control mechanism

for distributing network bandwidth between VMs. All network
traffic is passed through a bridge in Domain-0 and onto a shared
external network interface. However, bandwidth distribution and
shaping may be accomplished by employing the Linux traffic con-
trol (tc) tool. This tool performs bandwidth shaping and can be
used to both to both limit and share bandwidth between VMs. Such
a setup works well since all traffic from VM passes through Dom-0,
and by implementing traffic shaping in Dom-0 for each VM, Xen
eliminates the need to modify individual VMs.

Traffic shaping in tc is accomplished by creating flows, which
may be rate limited or shared among child flows in a hierarchical
fashion. Packets are then assigned to particular flows as desired.
A simple tc setup to rate-limit VMs is to create a flow for each
IP address of a DomU VM and assign packets to particular flows
based on source or destination IP addresses. For example, if the
machine has 3 megabits of upload bandwidth and wishes to provide
1 megabit to VM1 and 2 megabits to VM2, the administrator can use
tc to create two flows (rate-limited to 1 and 2 megabits, respec-
tively) and then assign all packets with a source address matching
VM1’s IP address to one network flow and similarly for VM2.

The tc utility allows both for strict caps on network bandwidth
and shared bandwidth with performance guarantees. The former is
a simple limit as described above. The latter means that bandwidth
may be used by more than one VM, but each VM is guaranteed at
least its rated speed. For example, the previous example could be
modified to provide bandwidth sharing as follows: a parent flow
could be created that is allowed to use the entire 3 megabits of
bandwidth, then the two other flows could be assigned as children.
This means that if either VM1 or VM2 is not using their bandwidth,
the other may send at the full link speed. However, if both are send-

ing as quickly as possible, then VM1 will only receive one megabit,
while VM2 will receive two. Finally, both caps and sharing may be
employed; for example, VM1 might be allowed to use VM2’s excess
bandwidth, but only to a maximum speed of 2.5 megabits.

We conducted several experiments using tc rate-limiting to ver-
ify that it performed as desired using the HTB (hierarchical to-
ken bucket) queuing discipline. We chose HTB because of its
straightforward configuration and good documentation relative to
other queuing disciplines available in tc. Our tests confirmed the
expected behavior of rate-limiting using iperf, which exhibited
sustained throughput within 10% of the limits specified. In our ex-
periments where two VMs competed for bandwidth, tc reliably
gave each VM its guaranteed rate while fairly dividing slack band-
width. We conclude that tc’s rate-limiting mechanism works well
for controlling throughput. However, for our applications, we are
particularly interested in the impact of tc on latency. We explore
this impact using several real applications, as described in detail in
Section 5.

5. REAL-WORLD CASE STUDIES
While our previous results used micro-benchmarks to quantify

the behavior of latency-sensitive tasks on shared cloud servers, we
now explore the effects of such interference on real latency-sensitive
applications. We pick two applications for our case studies: an on-
line game server and a streaming media server and discuss each in
turn.

5.1 Game Server Case Study
Many types of computer games have multiplayer or networked

components that operate across the Internet. Some, such as on-
line card games, can tolerate significant latency with little impact
on gameplay. Real-time games such as a first-person shooter (FPS),
however, are extremely sensitive to even small delays – such games
rely on quick reaction times from players and fast response times
from the game. High latency can result in game stutter and frus-
tration for players when their actions do not take effect quickly
(popularly known as ‘lag’). For a representative FPS, we chose to
use id Software’s 2004 title Doom 3. Running the game’s dedicated
server in a VM in our lab, we conducted tests of two metrics: map
loading times and server latency.

Map Loading Tests: Multiplayer games such as Doom 3 take
place in a game map, of which several are generally available.
Loading another map is a fairly common operation which may
occur several times during the course of a single gaming session.
Load times should be minimized, of course, to prevent forcing play-
ers to wait before continuing. Doom 3 includes a variety of multi-
player maps that may be used. To evaluate map loading times, we
had the game server cycle the active map several times and took
the average of the load times for each individual map. We repeated
this test several times (restarting the server in between tests to reset
the cache) with a variety of background interference occurring in
another VM.

The results of this test are shown in Figure 9. With the sec-
ond VM idle, each map load took approximately 2 seconds. With
background disk activity, the load time increased by approximately
25%, as the server was unable to access the map resource files on
disk as quickly. We ensured that this increase was due to disk in-
terference alone and not a byproduct of the CPU usage of disk I/O
by fixing the competing VM to a different CPU than the server.
When we moved the VM to the same CPU and reran the test with a
background CPU load, the average load time doubled – this makes
sense for a CPU bound task, as 50% of the CPU is diverted away
from the server to the computing VM. With both disk and CPU in-
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Figure 9: Game server map loading times with a collocated
resource-hog VM.

terference, the load time remained at roughly double the original
time, reinforcing that the map load task was CPU-bound. Overall,
this test confirmed our hypothesis that background work by other
VMs can have a very real effect on application performance.

Latency Tests: To measure server latency in our test VM, we
used the qstat utility, which is able to gather basic informa-
tion (including latency) from a variety of game servers. Using
qstat gives us an application-level measurement, which is more
useful and reliable than the low-level machine response time that
we would get from an ordinary ping. Given that the primary factor
in latency is network conditions, the primary sharing mechanism
we examined was tc. We evaluated two ways to use tc to share
upstream bandwidth (the primary scarce resource) between VMs.
One method is to take all available upstream bandwidth, divide it
between competing VMs, and prohibit VMs from using any band-
width that is not in their share. We refer to this method as ded-
icated bandwidth. The other method is to guarantee each VM its
fair share, but allow them to draw on the complete pool of upstream
bandwidth as well. We refer to this method as shared bandwidth.
Finally, we can opt to not use tc at all, which simply shares the
link between VMs as it would between processes in a single VM.

For our latency experiment, we started the dedicated server and
connected a single local client to ensure that the server was ac-
tually using the network. Tests of more than one client did not
show appreciable differences in overall latency, so we did not have
more players join the server during the test. Since our experiment
was conducted on our LAN, we used tc to create a bandwidth-
constrained environment by limiting the machine’s total upload to
1 megabit per second – while this may seem excessively low, the ac-
tual throughput used by the server is minimal (less than 100 kbps),
especially with few connected players. We conducted five sets of
latency tests, the results of which are shown in Figure 10 and Ta-
ble 2. In each test, we measured latency once a second for 60 sec-
onds while running a particular background load in a second VM
and sharing bandwidth between the two VMs with a particular tc
configuration. In all cases, tc was limiting the machine’s total out-
going bandwidth. We used the following five setups: idle (in which
the second VM did nothing, and tc was not performing shaping),
CPU and disk interference, network interference (many concurrent
iperf connections) without using tc to distribute bandwidth, and
then network interference using tc to provide either dedicated or
shared bandwidth.
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Figure 10: Game server latency with a collocated resource-hog
VM and tc bandwidth shaping.

Figure 10 shows the response times over the course of a minute
for each setup, while Table 2 gives the average latency, standard
deviation, and percentage of the 60 pings that failed to return a
response. With no background interference, the server latency was
steady at around 10 ms with some fluctuations but nothing that con-
stituted a problem. The same was true with CPU and disk interfer-
ence, indicating that (at least in our small server setup), nothing was
bottlenecked by the CPU or disk. Heavy background network I/O,
however, had a serious impact. When tc was not used, the back-
ground VM crippled the game server, causing 100% of our pings
to time out and resulting in the game client effectively freezing as
it waited for data from the server. The results show the importance
of using bandwidth control to ensure that one VM does not starve
others of bandwidth.

The application performance differed depending on whether band-
width was shared or dedicated to each VM. In both cases, the game
server remained responsive and gameplay on the client was gener-
ally smooth. However, the dedicated case had higher jitter when
compared to the shared case. While fair sharing of the link with the
background VM caused the average latency to moderately increase
versus dedicating bandwidth, it also had the effect of significantly
smoothing the jitter (due to the ability to utilize unused bandwidth
from the bursty background VM). Dedicating bandwidth lowered
the overall latency but also resulted in many latency spikes and
higher jitter. As shown in Table 2, this issue manifested as a higher
standard deviation in the dedicated case as well as a higher timeout
rate. We ruled out the possibility that the server was simply starved
of available bandwidth at the dedicated level by rerunning the test
with a slower total link speed and no interference, confirming that
this was not an issue by giving us similar times to the original idle
setup (<10 ms). Thus, we conclude that fair sharing of bandwidth
using tc yields somewhat higher latencies but can lower jitter and

Interference Avg. Time σ Timeouts
Idle (none) 8.1 10.2 0%
CPU + Disk 6.2 7.9 1.7%
Net (no tc) N/A N/A 100%

Net (tc, dedicated) 23.6 29.6 6.7%
Net (tc, sharing) 33.9 16.9 1.7%

Table 2: Game server latency statistics.



timeouts in the presence of bursty background loads; dedicating
bandwidth to VMs lowers the mean latency but can increase jit-
ter and timeouts when the guaranteed allocation is temporarily ex-
ceeded.

Our game server experiments highlight the importance of using
a tool like tc to fairly distribute bandwidth in a potentially com-
petitive network environment, as well as illustrate the tradeoffs that
result from the configuration of such a tool. In particular, the con-
figuration of tc presents a tradeoff between the lower average la-
tency and lower jitter.

5.2 Streaming Media Server Case Study
Our second case study focused on the performance of a stream-

ing media server. Streaming servers continuously transmit data
across a network to clients, and as such require a fast, reliable con-
nection to avoid stuttering or loss of quality in the video or au-
dio feed being served. Techniques such as server-side and client-
side buffering can help mask network fluctuations, but a variable
throughput and/or excessively high latency connection can still cre-
ate significant problems for a streaming server.

We chose Apple’s open-source Darwin Streaming Server (DSS)
to use for our streaming server experiments. DSS also comes with
a tool to generate artificial client loads on the server, which greatly
simplifies testing. We were interested in two primary metrics: the
total throughput served by the server to a set of streaming clients,
and the average jitter of those streams. Here, jitter refers to the
variability in the arrival intervals of packets; a connection on which
packets arrive at highly irregular intervals will have undesirable
high jitter, while one on which packets arrive regularly and on-
schedule will have desirable low jitter. The previous section has al-
ready shown that imperfect disk isolation in Xen can negatively im-
pact the disk throughput of an application under background load,
given the lack of disk QoS mechanisms. Here we were primarily
interested in server latency characteristics under background net-
work interference.

As in our game server experiments, we looked at four different
tc configurations to evaluate our two metrics: idle (no background
interference), off (interference without traffic shaping), shared tc,
and dedicated tc. The full machine upload speed was limited to 10
Mbps in all cases. To evaluate the total bit rate, we started up sev-
eral 1 Mbps streams of a movie file and ran them for one minute,
after which the individual overall bit rates were summed. To evalu-
ate jitter, we performed the same test and ran a single iperf con-
nection transferring 1 Mbps alongside the regular streams, which
provided jitter statistics at the completion of the test.

Since the full upload speed was 10 Mbps (capable of serving
around 8 streams), the server’s “fair share” of bandwidth was only
half of that when the collocated network hog was running. To ac-
count for this, we ran all tests with both 4 and 8 concurrent streams.
Our results are shown in Figures 11 (bit rates) and 12 (jitter).

With no background interference, the streaming server was able
to service 4 clients at full quality or 8 clients at roughly 60% qual-
ity. Once background load was introduced, however, the overall
throughput dropped by about 30%. Running tc either with shared
or dedicated bandwidth caused the average bit rate to recover sig-
nificantly, though not fully to the rates observed before any back-
ground network activity was introduced. The behavior of the jitter,
however, was more varied. Jitter increased considerably when in-
troducing the background load across all configurations. However,
the amount of jitter was even worse when dedicating bandwidth
with tc than in fair sharing case.

These results support the conclusions from our game server study:
fair sharing of bandwidth yields lower jitter than in the case where
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Figure 12: Stream jitter over 4 or 8 concurrent streams with a
variety of network sharing setups.

the link bandwidth is dedicated to VMs. Given that the shared and
dedicated setups performed equally well in our throughout experi-
ments, fair sharing appears to be the better choice for the streaming
server application. For latency sensitive applications in general, the
choice of police type presents a tradeoff between mean latency, la-
tency variance (jitter), and timeouts (which are, in this case, a side
effect of high jitter).

6. RELATED WORK
The importance of predictable resource allocation in certain ap-

plications has resulted in a significant amount of work on fair-share
schedulers. Several techniques have been proposed for predictable
allocation of the processor [14, 15, 19, 25], network bandwidth [7,
11, 16] and disk throughput [2, 23, 18] Broadly speaking, these
efforts have been targeted at adding quality-of-service (QoS) to
operating systems. Several systems have been developed to in-
tegrate many resource allocation schemes into a single cohesive
QoS-aware system. These systems include QLinux [31] (based
on the Linux kernel), Nemesis [2, 27] (built from the ground-up),
and Eclipse [4] (based on FreeBSD). Versions of Solaris have also
included a resource manager that enables fine-grain allocation of
various resources to processes and process groups [30]. These
mechanisms vary from automatic resource allocations by the OS to
application-specified resource requirements. We explore hypervisor-
level fair-share mechanisms to divide resources on a VM rather
than process level.



Work in hypervisor techniques have resulted in several estab-
lished virtualization systems. Two of the most well-known hyper-
visors are Xen [3, 8] and VMware ESX Server [32]. Xen in partic-
ular has been the focus of a significant amount of work regarding
performance isolation between VMs [17]; this has included evalu-
ating Xen’s different CPU schedulers and its I/O driver model. In
addition to managing the interactions between VMs, there have also
been efforts to reduce the overhead of Xen’s driver stack relative to
bare-metal Linux [22]. We leverage Xen’s capabilities to explore
the performance guarantees that can be made between competing
VMs. One of ESX Server’s key features not yet existing in Xen
is a shared memory model that allows administrators to provision
memory to multiple VMs, trading off higher memory availability
with greater performance consistency [32].

Cloud computing has become an increasingly active area of re-
search, particularly with the advent of commercial wide-scale de-
ployments such as EC2 [1]. One of the primary questions in such
deployments is how to perform dynamic resource allocation, par-
ticularly with regard to VMs. Both Xen [9] and VMware [24] have
implemented “live” VM migration techniques that allow the move-
ment of VMs between machines to be used as a resource alloca-
tion technique, such as in [28]. The requirements of SLAs spec-
ifying certain levels of performance are another area of work in
cloud computing; a variety of shared resource models have been
developed to deal with the issues of allocating resources on a multi-
machine and multi-service level [6, 13]. Estimating SLA resource
requirements by inspecting application behavior has been explored
in work such as [20]. SLA requirements are relevant to our work
in that such requirements are likely to be significantly more strin-
gent for a latency-sensitive multimedia application than for a typi-
cal web application.

Performance isolation in virtualized systems has been studied
from several perspectives, including the role of virtual machine
monitors in I/O performance [29], design of fair virtual I/O sched-
ulers [26], and benchmarking suites for evaluating performance
isolation [12, 21]. We build on this existing work by focusing on
multimedia and latency-sensitive application performance at a user
level. We also consider the potential role of system administrators
to configure and manage the risks of performance interference.

7. CONCLUSIONS
Motivated by the increasing popularity of cloud platforms for

running hosted applications, in this paper we conducted an empir-
ical study to evaluate the efficacy of these platforms for running
latency-sensitive multimedia applications. Since multiple virtual
machines running disparate applications from independent users
may share a physical cloud server, our study focused on whether
dynamically varying background load from such applications can
interfere with the performance seen by latency-sensitive tasks. We
first conducted a series of experiments on Amazon’s EC2 system
to quantify the CPU, disk, and network jitter and throughput fluc-
tuations seen over a period of several days. We then turn to a
laboratory-based cloud and systematically introduced different lev-
els of background load and studied its ability to provide application
isolation under different settings of the underlying resource control
mechanisms. In addition to several, micro-benchmarks, we also
evaluated the performance of real-world applications—the Doom 3
game server and Apple’s Darwin Streaming Server—under back-
ground load.

Our EC2 experiments revealed that the CPU and disk jitter and
the throughput seen by a latency-sensitive application can indeed
degrade due to background load from other virtual machines. Our
hypervisor experiments indicated similar jitter when sharing the

CPU and we observed fair throughput when CPU allocations are
capped by the hypervisor. Our experiments revealed significant
disk interference, resulting in up to 75% degradation under sus-
tained background load. We also found that network interference
can be mitigated using traffic shaping tools in the hypervisor. Our
application-level experiments revealed two main insights: the lack
of proper disk isolation mechanisms can hurt performance, and that
network isolation mechanisms in the hypervisor present a tradeoff
between mean latency and metrics such as jitter and timeouts—
dedicated caps yield lower average latency, while fair sharing yields
lower timeouts and somewhat lower jitter due to the ability to use
unused capacity from bursty background loads. Overall, our results
point to the need to carefully configure the hypervisor resource con-
trol mechanisms, which can mitigate, but not totally eliminate, this
interference.
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